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Existence of multibreathers in chains of coupled one-dimensional Hamiltonian oscillators
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We prove the existence of monoparametric families of multibreathers in chains of Hamiltonian oscillators of
one degree of freedom, with the total energy of the chain as a parameter. At the same time we evaluate the
neighborhood of the initial conditions for these solutions, as well as their stability. For the proof we use an idea
originally proposed by PoincaréNVe apply our results to calculate families of multibreathers in a chain
consisting of coupled Morse oscillators.
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[. INTRODUCTION By our method, the localization of the continued solutions is
shown at the same time. Regarding the stability of the con-
Since the paper of Takera al.[1], much work has been tinued solutions, we follow a different approach than in Ref.
done on discrete breathers, i.e., space-localized time-periodid¢3]. We directly use the formulas that have been already
motions, in chains of coupled oscillators; see for exampleproved by Poincatewhich determine the linear stability by
Refs.[2,3]. The first existence proof for breathers in Hamil- evaluating the expansion of the characteristic exponents of
tonian time-reversible networks is given in the well-known the periodic solutions up t@(\/e) terms. We apply these
paper by MacKay and Aubri#], where they make use of the results to the case where the system is a chain consisting of
notion of the anticontinuous limit. The anticontinuous limit Morse oscillators with a weak nearest-neighbor coupling. We
of a system, depending on at least one parametes the calculate analytically the neighborhood of the initial con-
limit where the system becomes equivalent to a collection oflitions of the breather solutions and determine their stability.
uncoupled oscillatorge.g., e=0). The method consists of This method can be easily extended to oscillators with more
the continuation of a trivial periodic and localized motion of than one degree of freedom. Note that this method cannot be
the anticontinuous limit with respect to the parametefhe  applied in dissipative systems, where the existence of multi-
problem is that, in this case, the implicit function theorembreathers has already been shdu#], since all the periodic
cannot be applied due to the phase degeneracy of the solarbits are isolated. But, it can be generalized for Hamiltonian
tions of the system. This problem is overcome in Réf.by  systems with a weak dissipative perturbation.
restricting the working space on the space of periodic loops

with time-reversal symmetry. After this proof, several other Il. EXISTENCE OF BREATHERS IN A CHAIN

works appeared, using and expanding the same idea, which  ~oNSISTING OF ONE DEGREE OF FREEDOM
demonstrated the existence of breathers in more complex OSCILLATORS

systems; for example, Ref§5,6]. Only recently, a proof

based on variational methods appedred We define our oscillator by an autonomous Hamiltonian

In the present work, we prove the existence of multisite orof one degree of freedom,
single-site breathers in a chain of coupled one-dimensional
Hamiltonian oscillators with on-site potential. In the proof
we use a different method of continuation from the anticon-
tinuous limit, where the parameter is the coupling constant
based on a theorem by Poincdrg8,9], Sec. 42 The gen- \yherev/(x) is the potential function. In this case the system

eralization of the same idea for symplectic mdp8] has s integrable sinced, is always an integral of motion. We
already been used for the proof of existence of breathers Qs ;me thatV(x) possesses a minimum a=0 with

chains of coupled integrable symplectic oscillatdr¥]. This
limit will also be called “uncoupled” or “unperturbed case”
since fore+0 the system is perturbed and becomes nonin
tegrable. The proof of existence of multibreathers does n

1
HU:§p2+V(X)!

V"(0)= wg with w,e R. We construct our chain by consid-
ering a countable set of oscillators with a nearest-neighbor
coupling through a coupling constaet The Hamiltonian

require the same conditions as in RE4], but, as it has en becomes

already been mentioned in Ref&] and[12], it makes use of o o

the relative phases between the oscillators, which in they_ | .y = 2 (Ep?JrV-(x-) +f 2 (X1 1—%)2
present work are expressed through the resonant adgles 0 = LU R
The conditions for the continuation from the anticontinuous D

limit are similar to these in Ref.12], but they are derived
through a different, simpler path, using the idea of Poincarewherex; is the position,p; the momentum, an¥; the po-
tential of theith oscillator. Note thaH, is trivially inte-
grable, being separable.
*Electronic address: vkouk@skiathos.physics.auth.gr The equations of motion for this Hamiltonian are
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L pU)=— wpx@+x?), (6d)

Pk . .
xH=pt, (60)

D= — —=—Vi(X) + €(Xps1— 2%+ X_1), KeZ . .
Pk X, k(Xi) + €(Xger 1 kT Xk—1) P = — 1(XQ)X(¢1%—2X(¢01+X80), (66

()

(1) — (1)

whereVy (x,) = dVi(x)/dx . X6 =Po " (69

We assume that, foe=0, the three central oscillators

(1) — _\/”(%(0)yy (1) (0) _ 94(0) 4 4(0)
move on periodic orbits, satisfying the resonance condition Po Vo(Xo )%g '+ (X1 = 2Xg "+ XZ7). (6h)

We definer{’=(x{" ,p")T. The nontrivial solutions of Egs.
w, (3)  (6a, 6h are periodic with periodT,=2m/w,. Since we
search for periodic solutions witi#T,, we select the

where o, is the frequency of théth oscillator, while the trivial solution
other oscillators lie on the stable equilibrium. With this as- =0, V |K>2 @
sumption, the complete system moves, ér0, on a non- k ’ )

isolated periodic orbit, lying on a three-dimensional torus,sg . for these oscillators we have to pursue the analysis fur-

with period T=k_,T_;=koTo=k;T;=27/w, where T,  her(in higher-order terms From Eqgs.(6¢c, 69, for the +2
=27/ w;. We seek conditions for the continuation of this ggillators we get

periodic motion under sufficiently small perturbation. For the

w1 Wy w3

K1 Ko Ky

proof we will use an idea originally proposed by Poincare x®) 0 1\ ( xY) 0

[8,9], Sec. 42. This method cannot be applied in the case of . _1 =( 2 )( (_1) + (0)).

only one central oscillator moving on a periodic orbit for P —wp 0/1p; X1

=0, for reasons that will be explained later on this work, but ) ,

we could use any number of central oscillators larger tharfNich can be written in the form

one. We choose to use three, because it is the smallest num n&l%IAn(iléJrfig(t), ®

ber of oscillators that can provide solutions symmetric with
respect to the zeroth-site oscillator. In the following, by
“central oscillators” we mean all the oscillators that initially
(for e=0) move on a periodic orbit.

We know that the solution of a Hamiltonian system, with
a Hamiltonian depending analytically on a parametglis t
analytic with respect to this paramefds)]. The three central 71 (t)=erty)(0) + et f e A, (s)ds, C)
oscillators move initially on periodic orbits. So, if these mo- 0
tions are continued under small perturbation, they can bgo’ finally we have
expanded in terms of as

where, in generaf;(t) = (0, x{h:&
sign ofi.
The solution of Eq(8) is (e.g., Ref[16])

lii-1) ", and sgni) is the

— (D) 2
2= €Mt O(€).
X=X+ ex(M+0O(€?), 7x2=€miptO(€)

Due to relationq7), the expansions for the oscillators with

p=pO+ ex(N+0(€?), ke{-1,0.1, (4 |k|>2 start withO(€?) terms, so,

Wherex(ko) is the unperturbed periodic solution and is con- X = ezx(k2)+0(e3),

sidered a knowi-periodic function of time. The solution for

the other oscillators expands as p=€2pP+0(ed), |k|>2. (10)
x=0+ex(P+0(€?), We insert the expansior{40) into the equations of motion,

and, for the second-order terms, we get
p=0+exP+0(e?) (|k|>1), (5 ,
. _ . =l wa
since(for e=0) they lie on the stable equilibrium (0,0).
By inserting the expansiong) and (5) into the system p(Z): — w2x(2) (|k|>3) (11b
(2), for the first-order terms, we get « Pk ’

. v(2) — 1(2)

XU =p(d), (63) XE3=PLs, (119

. (2) — _ 24(2) 4 (1)

piV=— w22 (K>2), (6 Ps= —wpat X, (19
@) ) For Egs.(119, (11b) we select as before the ftrivial solution
X55= Py, (60  »@=0, V |k|>3. From Eqgs(110), (11d we obtain
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n.3= €273+ 0(%),

and we get forp'} a solution similar to Eq(9). In general,
V I<|k|-1, we have

#=0

and, in a similar manner as in E(), we get
t
n(k‘k“”(t)=eAtnﬁ”‘”(O)+eAtf0e—Aka(s)ds. (12)

So, we conclude that the expansion of the solution of(Ey.
for the noncentral oscillators is

= 1p Dy o). (13

PHYSICAL REVIEW E 66, 066602 (2002

e M p(T) = p(0)1=p{M(T)— pl~1(0)+ O(e)

=0 ([k>1),

wi(T)—w;(0)=w; T+ O(€)=27k;,

1 ~(ToHy g B o
E[Ji(T)_Ji(O)]_fO(?_Wi t+0(e)=0 (Ji|=2).
(16)

The basic idea of Poincaie the division by a suitable power
of e. This division is consistent, because an orbit being con-
tinued for small enoughe#0 must fulfill Eq. (16) in its
original form without division, thus, since#0, division is
possible, and the condition must be still valid in the limit of
e—0 because of continuity. Thus fer—0 we get the con-

We perform the action-angle canonical transformation toditions for periodic motion.

the initial system(2) for the three central oscillators, and

sinceH,, being integrable, depends only on the actions, the

system becomes

JH

Xk:&_pk:pk: (1439
. oH

pk=—(9—Xk=—V&(Xk)+6(xk+1—2Xk+Xk—1) (|k|>1),

(14b)

. oH 9H, y
w; 73 - etegg (149
. M1 il=1 14
== —e—— <

= W .’ (Ji[=1), (140

where w;j=(dHy)/(dJ;) are the frequencies of the unper-
turbed motion of the central oscillators. Note that Edéglc,
14d), for e=0, have the solution
Wi=wit+ ﬂi y (15@
J;=const, (15b)

where ¥;=w;(0) are the initial angles. Due to expansion
(13), it holds that

7(T) = 7 0) = XK 0(T) = {7 D(0) ]+ O( ).
Similarly, by integrating Eq(14d) with respect to time for
one period, we have

Ji(T)—=Ji(0)= GJOT% dt+O(€?),

where, in first-order terms with respect ¢p the integration
is performed along the unperturbed periodic orbit. Conse
guently, we define the periodicity conditions as

e M) =30 1= XM D(T) = x{K71(0) + O(e)
=0,

x{(=D(T) = x(K-D(0) =0, (179
plM=Tm)—p=Yoy=0 (|k|>1), (17
wT=27k;, (179
JT% dt=0 (Ji|<1). (179

0 oW

By taking into consideration Eq12), Egs. (17a, 17b be-
come

M) = 7 7D(0) =06 (AT 1) MV 0)
T
=— eATJ e A% (s)ds.
0

So, in order to obtain initial conditiong(0) for periodic
motion, it must hold that e*T—1|+0, or

. 2
el #1eT# —n=nT,, VneZ
p

(18

which is the nonresonance condition with the phonons of the
system. We finally get

.
77(k\k\—l)(o):_(eAT_|)*1eATf e A% (s)ds.
0

Equation (170 coincides with the resonance condition
(3). On the other hand, let

1T
(Hy=1 ] Hy a

be the average value &f; along an unperturbet-periodic
orbit and letg; =ko9; —k; 99, i = + 1 be the resonant angles.

A pair of values¢; defines a periodic orbit on the three-
dimensional resonant torus of the unperturbed system. Since
H,, evaluated on &-periodic orbit of the unperturbed sys-

tem, is aT-periodic function of time, its average value de-
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pends only on the particular orbit and not on the initial point.which reduces to the following nondegenerdapharmonic-

So,(H4) must depend or; only through¢..,. Due to Eq.
(159, it holds that

L(ToH: I(H)

T 0 JW; ﬁﬁi '

(19
S0, since

HH1) < HHy) dp;  KHyp)
aﬂi'_:? 7oy a0 g

&<H1>:Z F7<H1>‘9_¢’j__2 k d(H1) j=+1,
0 ]

Iy dp; 3% T ) g
(20
Eq. (170 vyields
dHy)
s =0, i==1. (21

According to the implicit function theorerte.g., Ref[17]),
for analytic continuation of the periodic orbits fer# 0, the

ity) condition of the integrable paH, of the Hamiltonian,

de* Ho £0, i,je{—1,01, (24)
93,03,
and the condition
olev2<Hl> £0, i,je{-11, (25)
qodoy

where, relationg20), have been taken under consideration.
Equation (25) signifies that the zeros in Eq21) must be
simple. Thus we have proved that, under conditi¢®3)—
(25), the uncoupled periodic motion defined by Eg1) is
continued in an open intervaH ey, €g) of € around zero for

a particular value of the total energy of the oscillators. Since
the resonance conditio(8) is valid on a monoparametric
family of invariant tori of the uncoupled system with respect
to the energy, we actually prove, for a fixee (— €q, €g),

the existence ofmonoparametric familiesf breathers. One
may consider the energy or the period of the breather as a
parameter along the family. This result is similar to the one
proved in Ref[12], but it is obtained in a more direct and

Jacobian matrix of the periodicity conditions must be invert-insightful way.

ible for e=0. This matrix decomposes in<2 blocks along
the diagonal. So the invertibility condition for thegh non-
central oscillator is

IX(T)
ax(0)

apk(T)
dxy(0)

X (T)
apx(0)
pk(T)
ap(0)

+0. (22)

The matrix

X (T)
x(0)

p(T)
ax(0)

X (T)
pk(0)
ap(T) |
apk(0)

It is evident from the above analysis that if only one os-
cillator moves in a periodic orbit for=0, H; would depend
only on the corresponding angle, and its average value would
be a function only of the corresponding action, so the present
continuation method would not be applicable.

We have to point out here that by using this method, we
prove at the same time the localization of the solution, be-
cause due to Eq13), lim,_. ... 7—0, sincep{ ) is peri-
odic and[as can be seen in E¢l2)], it is bounded in the
time interval[0,T].

As it has already been mentioned, our method is valid for
any number of central oscillators larger than one.

Ill. STABILITY OF THE BREATHER SOLUTIONS

It is futile to speak about Lyapunov stability, since we
study a Hamiltonian system of more than two degrees of
freedom, where Arnold diffusion takes place. Instead, we

however, is the monodromy matrix of the system of linear-investigate the linear stability of the continued periodic so-

ized equations for thieth noncentral oscillator, which &*T.
So, condition(22) becomes
|eAT—1]#0, (23)

which coincides to the conditiofi8) of the periodic orbit to
exist.

lutions.

For e=0 the monodromy matrix of the linearized system
consists of X 2 sub-blocks. Because of the symplectic char-
acter of these sub-blocks, the eigenvalues of the central os-
cillators lie at unity, while the rest lie on the unit circle at two
conjugate points, as mentioned before, different from 1. By
setting the perturbatioa# 0, the eigenvalues of the noncen-

‘The condition for the central oscillators, after an appro-ra| pscillators move along the unit circle, since they are of
priate permutation of rows and columns, transforms to th§ne same kind in the sense of Krein the$i]. The eigen-

following:
F(Hy)  *(Hy)
Ididd  Iidd
def Ml 20, ije{-11, kle{-101,
PPH,
0
93,03,

values of the central oscillators become

)\| — ei (TiT,

whereo; are thecharacteristic exponentsccording to Ref.
[9], Sec. 79,0; are analytic with respect tge, so they are
expanded as
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oi=Vea+o(\e), ie-101, (26)  Note that for periodic motion, it holds that<0E<1. The
value E=0 corresponds to the stable equilibrium>at 0,
whereo?, are the eigenvalues of thex® matrix while E=1 corresponds to the unstable equilibrium at infin-

ity and its separatrix.
o XHD) #PHo

Eik= _j:_l aﬁiﬁﬂj (9‘]j(9‘]k’ i,ke{—-101. (27 B. Multibreathers in a chain of coupled Morse oscillators

) ) ) We define the chain by a countable set of coupled Morse
The existence of the other oscillators affects the expansion fscillators. The Hamiltonian of the full system is

the exponents in order higher thafe.

Due to conservation of energy, one pair of eigenvablues ) . )
of the central oscillators remains equal to 1, i.e., one pair of H=Ho+ EHl:iZm 5 Pit(e -1
exponents remains equal to zero in the perturbed system. If
the other eigenvalues lie on the unit circle of the complex €
plane (i.e., the corresponding exponents are purely imagi- + 5. 2 (Xi+1— X2,
nary), the breather is linearly stable, while if they have =
mzodulus differ'ent from 1 it \{vill be qnstable. If all nonzero and the equations of motion of theh oscillator are
of; are negative and are simple eigenvalues of the above
matrix E, complex instability cannot occur due to higher- Xe=Pr,
order terms, since, in this case a quadruple of complex ei-
genvalues\; should be formed, with each pair in the neigh-
borhood of I+ \/ec;;. This is, however, impossible fog

sufficiently small ifo; is a simple eigenvalue df. Since,  Fore=0, we assume that all the oscillators lie on the stable
as it can be showfAppendix A), only one pair of character- equilibrium (x,,p,)=(0,0), except the three central ones,
istic exponents remains zero, the continued periodic orbitsvhich move in periodic orbits, satisfying the resonance con-
are isolated. dition k_;T_1=KoTo=k,;T;=T. In order to compute the
periodic orbits of the unperturbed system which will be con-

IV. AN EXAMPLE tinued fore#0, we have, first of all, to find the solutions of
Eq. (21) for the specific Hamiltonian. In Appendix B, we
compute the average value ldf;,

©

©

Pr=2(e *k—1)e X+ e(Xys 1 — 2X+ Xp_1)-

A. The Morse oscillator

The Morse oscillator is defined by the potenti&),(x)

=(e *—1)?, and its Hamiltonian is (T
ey (Hy=1[ ot @2

1
=_p24(e X= 2. . . . .
Hu 2p (e b @8 where we remind that the integration is performed éor

_ _ o _ _ =0. Since the solution{31) is known, the use of action-
The action-angle canonical transformation is defined in theyngle variables is not necessary. We find

domain of bounded motion, and for this system it is given by

Hy= S 2 f . ’E sin ¢; )d
= —— | arctan ——————|d ¢,
w= arcco{ L_E)ex) ! i=+1 koki Zi— COSQZSi ¢I
JE kiag+k ~1/2 : ;
wherez; = e i20"%0% and cosla;=E; "*. The orbits that will
J= \/E( 1— ﬁ) (29) be continued are those which satisfy
whereE is the energy of the oscillator, i.e., the valuehby, 9(Hy) = 0= ¢ =07
for a specific bounded orbit. The Hamiltonian in action- i b

angles variables becomes ) )
These solutions also satisfy (#t(H,)/d¢;d¢;|#0 and the

1 ) continuation is valid.
HM:§(2\/§J_J ) To define the stability of the breather solution, we need to
calculate the matri defined in Eq(27). Since in this case

The frequency of the oscillator is

9*Hy
w=+2(1-E), (30) 93,03; ="
and the solution is it holds that
1— JVE cog V2(1-E)t+ ) EGH .
x(t)=In T E . (31 Eij_ﬁﬁiaﬁjy Vv i,je{—-1,0,1,
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f1m

o 0,2 oz a4

Re

FIG. 1. Time evolution of a stable multibreather, with 1:1 resonance, for three periods and the correspondimich lie on the
imaginary axis.

and finally we get The next step is to determine the resonance between the
p 5 central oscillators. We usually want to have symmetric solu-
2 9(Hy) i,j£0 tions, so we choos&_;=k; and w_;=w;, but we could
ansia(pj ' ’ ' obtain nonsymmetric solutions also. In the symmetric case,
52 the nonzero eigenvalues Bfare

_HY) ko2 ki MY o0 1=21, ’

I

17 99,09; dbiddy’ , 2K, 2(k3+2k3)
J%(H Oi1= K1 oK ' K1 oK

E kKkn—F——— (H1) i,j=0 I,m==1. (1+Bk;lgk2)k1 (1+Bk318k2)k0k1

I dm’

(33 with

This matrix is obviously symmetric with 5
. _2kg  zc08¢p—1 Bkzex{arccos?é V 2—k2w2) ]

11—, )
Ki z2—2z,c08¢,+1

which are distinct, so, for sufficiently smadl, complex in-
stability due to higher-order terms in E@®6) cannot occur.

Z,C0S¢h1— . ; . .
Eio=—2 , For every resonance there is a family of continued peri-
—2z;c08¢;+1 odic orbits. We choose one of these periodic orbits by fixing
the energy of the oscillators through their frequencies

2ko Z_4C08¢p_1—1 (wg,w1). We calculate the initial conditions of the unper-

turbed periodic orbits that will be continued fe# 0 through
Egs.(28)—(30) with a free variable, which defines the start-
ing point on the particular orbit. In this way we define the

1 72,-27_1c08¢_1+1’

zZ_,c08¢p_1—1

E jo=—2 , neighborhood of the initial conditions of the breather solu-
z%,—2z_,C08¢_,t1 tion. Then we approximate the accurate initial conditions nu-
merically. In Fig 1 a representative breather of the 1:1 reso-

2k, z,c08¢;— 1 nance fore=0.01 and the corresponding; are shown.

ko 22—
0 Zm2ncospytl V. DISCUSSION
2k Z_1C0S$_1— We have proven the existence of families of multibreather
ko 7z2,-2z_;cos¢p_,+1’ solutions in chains of coupled one degree of freedom Hamil-
tonian oscillators. We based this proof on a modification of a
E_,,=0. theorem by Poincar8,9]. At the same time, we calculated
the e neighborhood of the initial conditions for these solu-
Next we calculate the eigenvalues of the matEix which  tions, as well as their linear stability. Finally, we applied
coincide to the square ef;; in Eq.(26). Apart from one zero these results to the case of a chain consisting of coupled
0'i21, if either ¢, or ¢_, equal tow, the corresponding ei- Morse oscillators.
genvalue is negative, which gives a pair of imaginary expo- For the proof we considered a Hamiltonian of the form
nents, while, if eitherp, or ¢_; is equal to O, the corre- H=Hy+eH,, where H; describes nearest-neighbor cou-
sponding eigenvalue is positive, and supplies a pair of regbling and is independent ef The results, however, apply as
exponents. So, the only case of linearly stable breather solwell for every perturbation, analytic with respect to the pa-
tion is p1=¢p_1=1r. rametere. In this case, the zero-order term of the expansion
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of H, with respect toe shall be considered. 0 Ay Ay
We explained why we cannot prove the existence of one-

site breathers in chains of coupled one degree of freedom rank(Ajj)=rank 0 Ao Aoz

oscillators. But our method applies for one-site breathers 0 Ap Ap

also, in the case of integrable oscillators with more than one

degrees of freedom. If we would use a chain of coupled This leads, using Eq33), to

degrees of freedom oscillators, we could consider only the

central oscillator on a periodic orbit ofradimensional reso- 32<|-| )
nant torus, and redefine the resonance condit®ro be rank E) =ran Ibad; =2,
09
g Wn . . . e
Ko T e by condition(25). Similarly, it can be provenl9] that if E is
1 n

annXxn matrix, rankE=n—1.

Here w; are the frequencies of the various degrees of free-

dom of the specific oscillator. In this way, one could prove APPENDIX B: COMPUTATION OF (H;) FOR THE CHAIN
the existence of breatherlike solutions in multidimensional OF MORSE OSCILLATORS

networks of oscillators of more than one degree of freedom,

with period T =27/ w. Since &, pyx) 70 only fork=—1, 0, 1,H; (evaluated in

the unperturbed systénbecomes
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The x? terms inH, are of no interest, because their average
aValue is a constant quantity, (i.e., independent o#;). So,
instead of computing the mtegral in E(@2), we only have

to evaluate the following:
APPENDIX A: ISOLATION OF THE CONTINUED

PERIODIC ORBITS

.
. - = + .
To prove that only one pair of characteristic exponents ! fo (X-1XoF XXyt (B1)

remains zero foe+#0, it is sufficient to prove that
The Fourier expansion of the soluti¢81) is [20]

rank E)=2.
This reduces, due to E¢24), to the following: x()=C—23 s-leSacogs(V2(I—F) t+9)]
=1
KA) 14(52<H1>) S
ran =ran =
Since H; is single valued,f{dH;=0, evaluated on a o
T-periodic orbit. However, X(1)=C— >, C.cogswt+sd),
s=1
de—f—d f Hy,Hold meld
Tt o t= J, (HuHoldt=0, 0 W L where
or, by Eq.(19), C.=2s'e %% w=\2(1-E), cosha=E 2
o, %:0_ The expansions fox, andx; are
i
Differentiating with respect taj;, Xo(t)=Co— >, CosCOLSwot+53),
s=1
32("'1)
99,09, (A1) e

X;(1)=Cy— >, Cy, COrw t+r9y).
Sincew;#0 on the resonant torus, the matédxhas a zero r=1
eigenvalue. We multiply th¢th column of the above matrix
by w; and replace the first column with the sum of the col-We calculate the integraill:fgxoxl dt, which, by taking
umns. By taking under consideration E&1), we take under consideration the resonance conditi®n becomes
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T T
Il:f XOXl dt:f C0C1 dt
0 0

oo e T
+> > CO,SCLJ cog skywt +s9)cogrk; wt
s=1r=1 0
* T
+r01)dt—ClZ Co,sf cog skywt+sy)dt
s=1 0

” T
_COE Cl,rf COS(I’kle-I'ﬁl)dt. (BZ)
r=1 0

The first term of Eq(B2) provides a constart;, while the

last two terms are zero because they are integrals of cosines
over a multiple of their period. The second term can be writ-

ten as

1 o0 o0 T
=5 3 3 CaiC| | cot(skot kot (sig
2= 7 7)o

+rd,)]dt+ chos{(sko—rkl)wH(sﬁo—rﬁl)]dt .
0

The quantity inside the brackets is nonzero onlysk,

=rk, or sky=—rk;. Note that since,se N, the previous
two equations cannot be simultaneously true for fikedLet

sko=rky. Then we set

s=kym,
r=Kkom,

so, |, becomes

)

1

IZZE mz

.
> CO,klmcl,komfo cogm(ky9o—Kodq)]dt.
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The resonant angles areb;=kgd;—ki9q and ¢_4
:koﬁ,l_kflﬁo, SO

T T
I1=f XoX1 dt:z > Cok,mC1k,mCOLMep1) +Cy.
0 m=1
(B3)

A similar formula is obtained fot _;= f}x,x_dt and, by
using Eqgs.(B1)—(B3), we get

1 oo}
(H)=-3 m§=:1 Cok,mC1x,mCO<Mehy)

+ 2 CopymC-1igmcosmé y) | +c,

wherec=cy+c;+c_;. We recall thatC; ;=2s e %3, so
we have

[

> Cox.,mCx1),mCOL M 1)
m=1 =

e (k=jagtkoazy)m

cogMe.1).

1 m?

We putz, ;=eX=120"ked=1 gnd, by using the table of sums
[20], we finally get

sing;

el et e
<Hl>—mf arcta m d¢1

2 f sing_,
+—kok,1 arcta 7 —cosp_,

where we have dropped the terms that are independent of

&

do_q,
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