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Existence of multibreathers in chains of coupled one-dimensional Hamiltonian oscillators
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We prove the existence of monoparametric families of multibreathers in chains of Hamiltonian oscillators of
one degree of freedom, with the total energy of the chain as a parameter. At the same time we evaluate the
neighborhood of the initial conditions for these solutions, as well as their stability. For the proof we use an idea
originally proposed by Poincare´. We apply our results to calculate families of multibreathers in a chain
consisting of coupled Morse oscillators.
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I. INTRODUCTION

Since the paper of Takenoet al. @1#, much work has been
done on discrete breathers, i.e., space-localized time-per
motions, in chains of coupled oscillators; see for examp
Refs.@2,3#. The first existence proof for breathers in Ham
tonian time-reversible networks is given in the well-know
paper by MacKay and Aubry@4#, where they make use of th
notion of the anticontinuous limit. The anticontinuous lim
of a system, depending on at least one parametere, is the
limit where the system becomes equivalent to a collection
uncoupled oscillators~e.g., e50). The method consists o
the continuation of a trivial periodic and localized motion
the anticontinuous limit with respect to the parametere. The
problem is that, in this case, the implicit function theore
cannot be applied due to the phase degeneracy of the
tions of the system. This problem is overcome in Ref.@4# by
restricting the working space on the space of periodic lo
with time-reversal symmetry. After this proof, several oth
works appeared, using and expanding the same idea, w
demonstrated the existence of breathers in more com
systems; for example, Refs.@5,6#. Only recently, a proof
based on variational methods appeared@7#.

In the present work, we prove the existence of multisite
single-site breathers in a chain of coupled one-dimensio
Hamiltonian oscillators with on-site potential. In the pro
we use a different method of continuation from the antico
tinuous limit, where the parameter is the coupling constane,
based on a theorem by Poincare´ ~ @8,9#, Sec. 42!. The gen-
eralization of the same idea for symplectic maps@10# has
already been used for the proof of existence of breather
chains of coupled integrable symplectic oscillators@11#. This
limit will also be called ‘‘uncoupled’’ or ‘‘unperturbed case
since foreÞ0 the system is perturbed and becomes non
tegrable. The proof of existence of multibreathers does
require the same conditions as in Ref.@4#, but, as it has
already been mentioned in Refs.@2# and@12#, it makes use of
the relative phases between the oscillators, which in
present work are expressed through the resonant anglesf i .
The conditions for the continuation from the anticontinuo
limit are similar to these in Ref.@12#, but they are derived
through a different, simpler path, using the idea of Poinca´.

*Electronic address: vkouk@skiathos.physics.auth.gr
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By our method, the localization of the continued solutions
shown at the same time. Regarding the stability of the c
tinued solutions, we follow a different approach than in R
@13#. We directly use the formulas that have been alrea
proved by Poincare´, which determine the linear stability b
evaluating the expansion of the characteristic exponent
the periodic solutions up toO(Ae) terms. We apply these
results to the case where the system is a chain consistin
Morse oscillators with a weak nearest-neighbor coupling.
calculate analytically thee neighborhood of the initial con-
ditions of the breather solutions and determine their stabi
This method can be easily extended to oscillators with m
than one degree of freedom. Note that this method canno
applied in dissipative systems, where the existence of mu
breathers has already been shown@14#, since all the periodic
orbits are isolated. But, it can be generalized for Hamilton
systems with a weak dissipative perturbation.

II. EXISTENCE OF BREATHERS IN A CHAIN
CONSISTING OF ONE DEGREE OF FREEDOM

OSCILLATORS

We define our oscillator by an autonomous Hamiltoni
of one degree of freedom,

Hu5
1

2
p21V~x!,

whereV(x) is the potential function. In this case the syste
is integrable sinceHu is always an integral of motion. We
assume thatV(x) possesses a minimum atx50 with
V9(0)5vp

2 with vpPR. We construct our chain by consid
ering a countable set of oscillators with a nearest-neigh
coupling through a coupling constante. The Hamiltonian
then becomes

H5H01eH15 (
i 52`

` S 1

2
pi

21Vi~xi ! D1
e

2 (
i 52`

`

~xi 112xi !
2,

~1!

wherexi is the position,pi the momentum, andVi the po-
tential of the i th oscillator. Note thatH0 is trivially inte-
grable, being separable.

The equations of motion for this Hamiltonian are
©2002 The American Physical Society02-1



s
on

s

us

is
he
e
o

u
a

nu
ith
by
y

ith

l
o-
b

n
r

.

fur-

h

,

n

V. KOUKOULOYANNIS AND S. ICHTIAROGLOU PHYSICAL REVIEW E66, 066602 ~2002!
ẋk5
]H

]pk
5pk ,

ṗk52
]H

]xk
52Vk8~xk!1e~xk1122xk1xk21!, kPZ

~2!

whereVk8(xk)5dVk(xk)/dxk .
We assume that, fore50, the three central oscillator

move on periodic orbits, satisfying the resonance conditi

v21

k21
5

v0

k0
5

v1

k1
5v, ~3!

where v i is the frequency of thei th oscillator, while the
other oscillators lie on the stable equilibrium. With this a
sumption, the complete system moves, fore50, on a non-
isolated periodic orbit, lying on a three-dimensional tor
with period T5k21T215k0T05k1T152p/v, where Ti
52p/v i . We seek conditions for the continuation of th
periodic motion under sufficiently small perturbation. For t
proof we will use an idea originally proposed by Poincar´ ~
@8,9#, Sec. 42!. This method cannot be applied in the case
only one central oscillator moving on a periodic orbit fore
50, for reasons that will be explained later on this work, b
we could use any number of central oscillators larger th
one. We choose to use three, because it is the smallest
ber of oscillators that can provide solutions symmetric w
respect to the zeroth-site oscillator. In the following,
‘‘central oscillators’’ we mean all the oscillators that initiall
~for e50) move on a periodic orbit.

We know that the solution of a Hamiltonian system, w
a Hamiltonian depending analytically on a parametere, is
analytic with respect to this parameter@15#. The three centra
oscillators move initially on periodic orbits. So, if these m
tions are continued under small perturbation, they can
expanded in terms ofe as

xk5xk
(0)1exk

(1)1O~e2!,

pk5pk
(0)1exk

(1)1O~e2!, kP$21,0,1%, ~4!

wherexk
(0) is the unperturbed periodic solution and is co

sidered a knownT-periodic function of time. The solution fo
the other oscillators expands as

xk501exk
(1)1O~e2!,

pk501exk
(1)1O~e2! ~ uku.1!, ~5!

since~for e50) they lie on the stable equilibrium (0,0).
By inserting the expansions~4! and ~5! into the system

~2!, for the first-order terms, we get

ẋk
(1)5pk

(1) , ~6a!

ṗk
(1)52vp

2xk
(1) ~ uku.2!, ~6b!

ẋ62
(1)5p62

(1) , ~6c!
06660
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ṗ62
(1)52vp

2x62
(1)1x61

(0) , ~6d!

ẋ61
(1)5p61

(1) , ~6e!

ṗ61
(1)52V19~x61

(0) !x61
(1)22x61

(0)1x0
(0) , ~6f!

ẋ0
(1)5p0

(1) , ~6g!

ṗ0
(1)52V09~x0

(0)!x0
(1)1~x1

(0)22x0
(0)1x21

(0) !. ~6h!

We definehk
( l )5(xk

( l ) ,pk
( l ))T. The nontrivial solutions of Eqs

~6a, 6b! are periodic with periodTp52p/vp . Since we
search for periodic solutions withTÞTp , we select the
trivial solution

hk
(1)50, ; uku.2. ~7!

So, for these oscillators we have to pursue the analysis
ther ~in higher-order terms!. From Eqs.~6c, 6d!, for the62
oscillators we get

S ẋ62
(1)

ṗ62
(1) D 5S 0 1

2vp
2 0D S x62

(1)

p62
(1) D 1S 0

x61
(0) D ,

which can be written in the form

ḣ62
(1)5Ah62

(1)1f62~ t !, ~8!

where, in general,f i(t)5(0, xsgn(i )(u i u21)
(u i u22) )T, and sgn(i ) is the

sign of i.
The solution of Eq.~8! is ~e.g., Ref.@16#!

h62
(1)~ t !5eAth62

(1)~0!1eAtE
0

t

e2Asf62~s!ds, ~9!

so, finally we have

h625eh62
(1)1O~e2!.

Due to relations~7!, the expansions for the oscillators wit
uku.2 start withO(e2) terms, so,

xk5e2xk
(2)1O~e3!,

pk5e2pk
(2)1O~e3!, uku.2. ~10!

We insert the expansions~10! into the equations of motion
and, for the second-order terms, we get

ẋk
(2)5pk

(2) , ~11a!

ṗk
(2)52vp

2xk
(2) ~ uku.3!, ~11b!

ẋ63
(2)5p63

(2) , ~11c!

ṗ63
(2)52vp

2x63
(2)1x62

(1) . ~11d!

For Eqs.~11a!, ~11b! we select as before the trivial solutio
hk

(2)50, ; uku.3. From Eqs.~11c!, ~11d! we obtain
2-2



t
d
th

r-

n

se

r
on-

of

the

n

.
-
ince
-

e-

EXISTENCE OF MULTIBREATHERS IN CHAINS OF . . . PHYSICAL REVIEW E 66, 066602 ~2002!
h635e2h63
(2)1O~e3!,

and we get forh63
(2) a solution similar to Eq.~9!. In general,

; l ,uku21, we have

hk
( l )50;

and, in a similar manner as in Eq.~9!, we get

hk
(uku21)~ t !5eAthk

(uku21)~0!1eAtE
0

t

e2Asfk~s!ds. ~12!

So, we conclude that the expansion of the solution of Eq.~2!
for the noncentral oscillators is

hk5e uku21hk
(uku21)1O~e uku!. ~13!

We perform the action-angle canonical transformation
the initial system~2! for the three central oscillators, an
sinceH0, being integrable, depends only on the actions,
system becomes

ẋk5
]H

]pk
5pk , ~14a!

ṗk52
]H

]xk
52Vk8~xk!1e~xk1122xk1xk21! ~ uku.1!,

~14b!

ẇi5
]H

]Ji
5v i1e

]H1

]Ji
, ~14c!

J̇i52
]H

]wi
52e

]H1

]wi
, ~ u i u<1!, ~14d!

where v i5(]H0)/(]Ji) are the frequencies of the unpe
turbed motion of the central oscillators. Note that Eqs.~14c,
14d!, for e50, have the solution

wi5v i t1q i , ~15a!

Ji5const, ~15b!

where q i5wi(0) are the initial angles. Due to expansio
~13!, it holds that

hk~T!2hk~0!5e uku21@hk
(uku21)~T!2hk

(uku21)~0!#1O~e uku!.

Similarly, by integrating Eq.~14d! with respect to time for
one period, we have

Ji~T!2Ji~0!5eE
0

T]H1

]wi
dt1O~e2!,

where, in first-order terms with respect toe, the integration
is performed along the unperturbed periodic orbit. Con
quently, we define the periodicity conditions as

e2uku11@xk~T!2xk~0!#5xk
(uku21)~T!2xk

(uku21)~0!1O~e!

50,
06660
o

e

-

e2uku11@pk~T!2pk~0!#5pk
(uku21)~T!2pk

(uku21)~0!1O~e!

50 ~ uku.1!,

wi~T!2wi~0!5v iT1O~e!52pki ,

1

e
@Ji~T!2Ji~0!#5E

0

T]H1

]wi
dt1O~e!50 ~ u i u<1!.

~16!

The basic idea of Poincare´ is the division by a suitable powe
of e. This division is consistent, because an orbit being c
tinued for small enougheÞ0 must fulfill Eq. ~16! in its
original form without division, thus, sinceeÞ0, division is
possible, and the condition must be still valid in the limit
e→0 because of continuity. Thus fore→0 we get the con-
ditions for periodic motion.

xk
(uku21)~T!2xk

(uku21)~0!50, ~17a!

pk
(uku21)~T!2pk

(uku21)~0!50 ~ uku.1!, ~17b!

v iT52pki , ~17c!

E
0

T]H1

]wi
dt50 ~ u i u<1!. ~17d!

By taking into consideration Eq.~12!, Eqs. ~17a, 17b! be-
come

hk
(uku21)~T!2hk

(uku21)~0!50⇔~eAT2I !hk
(uku21)~0!

52eATE
0

T

e2Asfk~s!ds.

So, in order to obtain initial conditionsh(0) for periodic
motion, it must hold thatu eAT2I uÞ0, or

e6 ivpTÞ1⇔TÞ
2p

vp
n5nTp , ; nPZ, ~18!

which is the nonresonance condition with the phonons of
system. We finally get

hk
(uku21)~0!52~eAT2I !21eATE

0

T

e2Asfk~s!ds.

Equation ~17c! coincides with the resonance conditio
~3!. On the other hand, let

^H1&5
1

TE0

T

H1 dt

be the average value ofH1 along an unperturbedT-periodic
orbit and letf i5k0q i2kiq0 , i 561 be the resonant angles
A pair of valuesf i defines a periodic orbit on the three
dimensional resonant torus of the unperturbed system. S
H1, evaluated on aT-periodic orbit of the unperturbed sys
tem, is aT-periodic function of time, its average value d
2-3
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pends only on the particular orbit and not on the initial poi
So, ^H1& must depend onq i only throughf61. Due to Eq.
~15a!, it holds that

1

TE0

T]H1

]wi
dt5

]^H1&
]q i

, ~19!

so, since

]^H1&
]q i

5(
j

]^H1&
]f j

]f j

]q i
5k0

]^H1&
]f i

,

]^H1&
]q0

5(
j

]^H1&
]f j

]f j

]q0
52(

j
kj

]^H1&
]f j

, j 561,

~20!

Eq. ~17d! yields

]^H1&
]f i

50, i 561. ~21!

According to the implicit function theorem~e.g., Ref.@17#!,
for analytic continuation of the periodic orbits foreÞ0, the
Jacobian matrix of the periodicity conditions must be inve
ible for e50. This matrix decomposes in 232 blocks along
the diagonal. So the invertibility condition for thekth non-
central oscillator is

U ]xk~T!

]xk~0!
21

]xk~T!

]pk~0!

]pk~T!

]xk~0!

]pk~T!

]pk~0!
21
UÞ0. ~22!

The matrix

S ]xk~T!

]xk~0!

]xk~T!

]pk~0!

]pk~T!

]xk~0!

]pk~T!

]pk~0!

D ,

however, is the monodromy matrix of the system of line
ized equations for thekth noncentral oscillator, which iseAT.
So, condition~22! becomes

ueAT2I uÞ0, ~23!

which coincides to the condition~18! of the periodic orbit to
exist.

The condition for the central oscillators, after an app
priate permutation of rows and columns, transforms to
following:

detU ]2^H1&
]f i]f j

]2^H1&
]f i]Jk

0
]2H0

]Jl]Jk

UÞ0, i , j P$21,1%, k,l P$21,0,1%,
06660
.

-

-

-
e

which reduces to the following nondegeneracy~anharmonic-
ity! condition of the integrable partH0 of the Hamiltonian,

detU ]2H0

]Ji]Jj
UÞ0, i , j P$21,0,1%, ~24!

and the condition

detU ]2^H1&
]f i]f j

UÞ0, i , j P$21,1%, ~25!

where, relations~20!, have been taken under consideratio
Equation ~25! signifies that the zeros in Eq.~21! must be
simple. Thus we have proved that, under conditions~23!–
~25!, the uncoupled periodic motion defined by Eq.~21! is
continued in an open interval (2e0 ,e0) of e around zero for
a particular value of the total energy of the oscillators. Sin
the resonance condition~3! is valid on a monoparametric
family of invariant tori of the uncoupled system with respe
to the energy, we actually prove, for a fixedeP(2e0 ,e0),
the existence ofmonoparametric familiesof breathers. One
may consider the energy or the period of the breather a
parameter along the family. This result is similar to the o
proved in Ref.@12#, but it is obtained in a more direct an
insightful way.

It is evident from the above analysis that if only one o
cillator moves in a periodic orbit fore50, H1 would depend
only on the corresponding angle, and its average value wo
be a function only of the corresponding action, so the pres
continuation method would not be applicable.

We have to point out here that by using this method,
prove at the same time the localization of the solution,
cause due to Eq.~13!, limk→6`hk→0, sincehk

(k21) is peri-
odic and@as can be seen in Eq.~12!#, it is bounded in the
time interval@0,T#.

As it has already been mentioned, our method is valid
any number of central oscillators larger than one.

III. STABILITY OF THE BREATHER SOLUTIONS

It is futile to speak about Lyapunov stability, since w
study a Hamiltonian system of more than two degrees
freedom, where Arnold diffusion takes place. Instead,
investigate the linear stability of the continued periodic s
lutions.

For e50 the monodromy matrix of the linearized syste
consists of 232 sub-blocks. Because of the symplectic ch
acter of these sub-blocks, the eigenvalues of the centra
cillators lie at unity, while the rest lie on the unit circle at tw
conjugate points, as mentioned before, different from 1.
setting the perturbationeÞ0, the eigenvalues of the noncen
tral oscillators move along the unit circle, since they are
the same kind in the sense of Krein theory@18#. The eigen-
values of the central oscillators become

l i5e6s iT,

wheres i are thecharacteristic exponents. According to Ref.
@9#, Sec. 79,s i are analytic with respect toAe, so they are
expanded as
2-4
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s i5Aes i11o~Ae!, i P21,0,1, ~26!

wheres i1
2 are the eigenvalues of the 333 matrix

Eik52 (
j 521

1
]2^H1&
]q i]q j

]2H0

]Jj]Jk
, i ,kP$21,0,1%. ~27!

The existence of the other oscillators affects the expansio
the exponents in order higher thanAe.

Due to conservation of energy, one pair of eigenvaluesl i
of the central oscillators remains equal to 1, i.e., one pai
exponents remains equal to zero in the perturbed system
the other eigenvalues lie on the unit circle of the comp
plane ~i.e., the corresponding exponents are purely ima
nary!, the breather is linearly stable, while if they ha
modulus different from 1 it will be unstable. If all nonzer
s i1

2 are negative and are simple eigenvalues of the ab
matrix E, complex instability cannot occur due to highe
order terms, since, in this case a quadruple of complex
genvaluesl i should be formed, with each pair in the neig
borhood of 16Aes i1. This is, however, impossible fore
sufficiently small ifs i1

2 is a simple eigenvalue ofE. Since,
as it can be shown~Appendix A!, only one pair of character
istic exponents remains zero, the continued periodic or
are isolated.

IV. AN EXAMPLE

A. The Morse oscillator

The Morse oscillator is defined by the potentialVM(x)
5(e2x21)2, and its Hamiltonian is

HM5
1

2
p21~e2x21!2. ~28!

The action-angle canonical transformation is defined in
domain of bounded motion, and for this system it is given

w5arccosS 12~12E!ex

AE
D ,

J5A2~12A12E!, ~29!

whereE is the energy of the oscillator, i.e., the value ofHM
for a specific bounded orbit. The Hamiltonian in actio
angles variables becomes

HM5
1

2
~2A2J2J2!.

The frequency of the oscillator is

v5A2~12E!, ~30!

and the solution is

x~ t !5 lnH 12AE cos~A2~12E!t1q!

12E J . ~31!
06660
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Note that for periodic motion, it holds that 0,E,1. The
value E50 corresponds to the stable equilibrium atx50,
while E51 corresponds to the unstable equilibrium at infi
ity and its separatrix.

B. Multibreathers in a chain of coupled Morse oscillators

We define the chain by a countable set of coupled Mo
oscillators. The Hamiltonian of the full system is

H5H01eH15 (
i 52`

` S 1

2
pi

21~e2xi21!2D
1

e

2 (
i 52`

`

~xi 112xi !
2,

and the equations of motion of thekth oscillator are

ẋk5pk ,

ṗk52~e2xk21!e2xk1e~xk1122xk1xk21!.

For e50, we assume that all the oscillators lie on the sta
equilibrium (xk ,pk)5(0,0), except the three central one
which move in periodic orbits, satisfying the resonance c
dition k21T215k0T05k1T15T. In order to compute the
periodic orbits of the unperturbed system which will be co
tinued foreÞ0, we have, first of all, to find the solutions o
Eq. ~21! for the specific Hamiltonian. In Appendix B, w
compute the average value ofH1,

^H1&5
1

TE0

T

H1 dt, ~32!

where we remind that the integration is performed fore
50. Since the solution~31! is known, the use of action
angle variables is not necessary. We find

^H1&5 (
i 561

2

k0ki
E arctanS sinf i

zi2cosf i
Ddf i ,

wherezi5ekia01k0ai and coshai5Ei
21/2. The orbits that will

be continued are those which satisfy

]^H1&
]f i

50⇒f i50,p.

These solutions also satisfy detu]2^H1&/]f i]f j uÞ0 and the
continuation is valid.

To define the stability of the breather solution, we need
calculate the matrixE defined in Eq.~27!. Since in this case

]2H0

]Jl]Jj
52d l j ,

it holds that

Ei j 5
]2^H1&
]q i]q j

, ; i , j P$21,0,1%,
2-5
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FIG. 1. Time evolution of a stable multibreather, with 1:1 resonance, for three periods and the correspondings i1 which lie on the
imaginary axis.
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and finally we get

Ei j 5
]2^H1&
]q i]q j

55
k0

2 ]2^H1&
]f i]f j

, i , j Þ0,

2k0(
l

kl

]2^H1&
]f i]f l

, iÞ0,j 50 l 561,

(
l ,m

klkm

]2^H1&
]f l]fm

, i , j 50 l ,m561.

~33!

This matrix is obviously symmetric with

E115
2k0

k1

z1cosf121

z1
222z1cosf111

,

E10522
z1cosf121

z1
222z1cosf111

,

E21215
2k0

k21

z21cosf2121

z21
2 22z21cosf2111

,

E210522
z21cosf2121

z21
2 22z21cosf2111

,

E005
2k1

k0

z1cosf121

z1
222z1cosf111

1
2k21

k0

z21cosf2121

z21
2 22z21cosf2111

,

E21150.

Next we calculate the eigenvalues of the matrixE, which
coincide to the square ofs i1 in Eq. ~26!. Apart from one zero
s i1

2 , if either f1 or f21 equal top, the corresponding ei
genvalue is negative, which gives a pair of imaginary ex
nents, while, if eitherf1 or f21 is equal to 0, the corre
sponding eigenvalue is positive, and supplies a pair of
exponents. So, the only case of linearly stable breather s
tion is f15f215p.
06660
-

al
lu-

The next step is to determine the resonance between
central oscillators. We usually want to have symmetric so
tions, so we choosek215k1 and v215v1, but we could
obtain nonsymmetric solutions also. In the symmetric ca
the nonzero eigenvalues ofE are

s i1
2 5H 2k0

~11bk0

k1bk1

k0!k1

,
2~k0

212k1
2!

~11bk0

k1bk1

k0!k0k1
J ,

with

bk5expFarccoshSA 2

22k2v2D G ,

which are distinct, so, for sufficiently smalle, complex in-
stability due to higher-order terms in Eq.~26! cannot occur.

For every resonance there is a family of continued pe
odic orbits. We choose one of these periodic orbits by fix
the energy of the oscillators through their frequenc
(v0 ,v1). We calculate the initial conditions of the unpe
turbed periodic orbits that will be continued foreÞ0 through
Eqs.~28!–~30! with a free variable, which defines the star
ing point on the particular orbit. In this way we define thee
neighborhood of the initial conditions of the breather so
tion. Then we approximate the accurate initial conditions n
merically. In Fig. 1 a representative breather of the 1:1 res
nance fore50.01 and the correspondings i1 are shown.

V. DISCUSSION

We have proven the existence of families of multibreath
solutions in chains of coupled one degree of freedom Ham
tonian oscillators. We based this proof on a modification o
theorem by Poincare´ @8,9#. At the same time, we calculate
the e neighborhood of the initial conditions for these sol
tions, as well as their linear stability. Finally, we applie
these results to the case of a chain consisting of coup
Morse oscillators.

For the proof we considered a Hamiltonian of the for
H5H01eH1, where H1 describes nearest-neighbor co
pling and is independent ofe. The results, however, apply a
well for every perturbation, analytic with respect to the p
rametere. In this case, the zero-order term of the expans
2-6
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of H1 with respect toe shall be considered.
We explained why we cannot prove the existence of o

site breathers in chains of coupled one degree of freed
oscillators. But our method applies for one-site breath
also, in the case of integrable oscillators with more than
degrees of freedom. If we would use a chain of couplen
degrees of freedom oscillators, we could consider only
central oscillator on a periodic orbit of an-dimensional reso-
nant torus, and redefine the resonance condition~3! to be

v1

k1
5•••5

vn

kn
5v.

Here v i are the frequencies of the various degrees of fr
dom of the specific oscillator. In this way, one could pro
the existence of breatherlike solutions in multidimensio
networks of oscillators of more than one degree of freedo
with periodT52p/v.
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APPENDIX A: ISOLATION OF THE CONTINUED
PERIODIC ORBITS

To prove that only one pair of characteristic expone
remains zero foreÞ0, it is sufficient to prove that

rank~E!52.

This reduces, due to Eq.~24!, to the following:

rank~A!5rankS ]2^H1&
]q i]q j

D52.

Since H1 is single valued,*TdH150, evaluated on a
T-periodic orbit. However,

E
T
dH15E

0

TdH1

dt
dt5E

0

T

@H1 ,H0#dt5v iE
0

T]H1

]wi
dt,

or, by Eq.~19!,

v i

]^H1&
]q i

50.

Differentiating with respect toq j ,

v i

]2^H1&
]q i]q j

50. ~A1!

Sincev iÞ0 on the resonant torus, the matrixA has a zero
eigenvalue. We multiply thej th column of the above matrix
by v i and replace the first column with the sum of the c
umns. By taking under consideration Eq.~A1!, we take
06660
-
m
rs
e

e
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l
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-

rank~Ai j !5rankS 0 A210 A211

0 A00 A01

0 A10 A11

D .

This leads, using Eq.~33!, to

rank~E!5rankS ]2^H1&
]f i]f j

D52,

by condition~25!. Similarly, it can be proven@19# that if E is
an n3n matrix, rankE5n21.

APPENDIX B: COMPUTATION OF ŠH 1‹ FOR THE CHAIN
OF MORSE OSCILLATORS

Since (xk , pk)Þ0 only for k521, 0, 1,H1 ~evaluated in
the unperturbed system! becomes

H15
1

2
@x21

2 1~x212x0!21~x02x1!21x1
2#.

The xi
2 terms inH1 are of no interest, because their avera

value is a constant quantityc0 ~i.e., independent off i). So,
instead of computing the integral in Eq.~32!, we only have
to evaluate the following:

I 5E
0

T

~x21x01x0x1!dt. ~B1!

The Fourier expansion of the solution~31! is @20#

x~ t !5C22(
s51

`

s21e2sa cos@s~A2~12E! t1q!#

or

x~ t !5C2(
s51

`

Cs cos~svt1sq!,

where

Cs52s21e2sa, v5A2~12E!, cosha5E21/2.

The expansions forx0 andx1 are

x0~ t !5C02(
s51

`

C0,s cos~sv0t1sq0!,

x1~ t !5C12(
r 51

`

C1,r cos~rv1t1rq1!.

We calculate the integralI 15*0
Tx0x1 dt, which, by taking

under consideration the resonance condition~3!, becomes
2-7
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I 15E
0

T

x0x1 dt5E
0

T

C0C1 dt

1(
s51

`

(
r 51

`

C0,sC1,rE
0

T

cos~sk0vt1sq0!cos~rk1vt

1rq1!dt2C1(
s51

`

C0,sE
0

T

cos~sk0vt1sq0!dt

2C0(
r 51

`

C1,rE
0

T

cos~rk1vt1rq1!dt. ~B2!

The first term of Eq.~B2! provides a constantc1, while the
last two terms are zero because they are integrals of cos
over a multiple of their period. The second term can be w
ten as

I 25
1

2 (
s51

`

(
r 51

`

C0,sC1,rF E
0

T

cos@~sk01rk1!vt1~sq0

1rq1!#dt1E
0

T

cos@~sk02rk1!vt1~sq02rq1!#dtG .
The quantity inside the brackets is nonzero only ifsk0
5rk1 or sk052rk1. Note that sincer ,sPN, the previous
two equations cannot be simultaneously true for fixedki . Let
sk05rk1. Then we set

s5k1m,

r 5k0m,

so, I 2 becomes

I 25
1

2 (
m51

`

C0,k1mC1,k0mE
0

T

cos@m~k1q02k0q1!#dt.
y

in.

ac

06660
es
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The resonant angles aref15k0q12k1q0 and f21
5k0q212k21q0, so

I 15E
0

T

x0x1 dt5
T

2 (
m51

`

C0,k1mC1,k0mcos~mf1!1c1 .

~B3!

A similar formula is obtained forI 215*0
Tx0x21dt and, by

using Eqs.~B1!–~B3!, we get

^H1&52
1

2 S (
m51

`

C0,k1mC1,k0mcos~mf1!

1 (
m51

`

C0,k21mC21,k0mcos~mf21!D 1c,

wherec5c01c11c21. We recall thatCi ,s52s21e2sai, so
we have

(
m51

`

C0,k61mC61,k0mcos~mf61!

5
4

k0k61
(

m51

`
e2(k61a01k0a61)m

m2
cos~mf61!.

We put z615ek61a01k0a61 and, by using the table of sum
@20#, we finally get

^H1&5
2

k0k1
E arctanS sinf1

z12cosf1
Ddf1

1
2

k0k21
E arctanS sinf21

z212cosf21
Ddf21 ,

where we have dropped the terms that are independen
f i .
-
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